加入收藏 | 设为首页 | 会员中心 | 我要投稿 瑞安网 (https://www.ruian888.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 移动互联 > 评测 > 正文

用PaddlePaddle 实现目标检测任务——Paddle Fluid v1.1深度测评

发布时间:2018-12-12 20:28:24 所属栏目:评测 来源:睿博远航
导读:【51CTO.com原创稿件】 1.前言 11月1日,百度发布了Paddle Fluid的1.1版本,作为国内首个深度学习框架,PaddlePaddle对中文社区非常友好,有完善的中文社区、项目为导向的中文教程,可以让更多中文使用者更方便地进行深度学习、机器学习相关的研究和实践。

执行我们定义的上述Program:

cpu = fluid.core.CPUPlace()

exe = fluid.Executor(cpu)

exe.run(fluid.default_startup_program())

#开始训练

outs = exe.run(

feed={'x':train_data,'y':y_true},

fetch_list=[y_predict.name,avg_cost.name])

#观察结果

print outs

输出结果:

[array([[0.9010564],

[1.8021128],

[2.7031693],

[3.6042256]], dtype=float32), array([9.057577], dtype=float32)]

这样就用PaddlePaddle实现了简单的计算流程,个人感觉使用起来跟TensorFlow的相似度较高,习惯在TensorFlow上跑模型的小伙伴应该很容易适应PaddlePaddle的这一套生态。

(编辑:瑞安网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读